D. GUIRAUD

DR. J. M. CERVIÑO SS 2013

GRUPPENKOHOMOLOGIE

ÜBUNGSBLATT X

< 27.6.2013

(37) Überbleibsel aus der Vorlesung.

Sei $\alpha: G \to G'$ ein Gruppenhomomorphismus, dann gilt $\alpha^*([u] \smile [v]) = \alpha^*[u] \smile$ $\alpha^{\star}[v]$ in $H^{\star}(G, M \otimes_{\mathbb{Z}} N)$, für alle $[u] \in H^{\star}(G', M)$ und $[v] \in H^{\star}(G', N)$.

≤3 Punkte

(38) Explizite Cup-Produkten.

Seien $x \in H^0(G, M) = M^G$ und $[v] \in H^q(G, N)$, zeigen Sie, dass $x \smile [v] =$ $(f_x)_{\star}(v)$, wobei $(f_x)_{\star}: H^{\star}(G,N) \to H^{\star}(G,M\otimes_{\mathbb{Z}}N)$, der durch den $\mathbb{Z}G$ -Modulhomomorphismus $f_x: N \to M \otimes_{\mathbb{Z}} N$, $y \mapsto x \otimes y$, in der Kohomologie induzierte Gruppenhomomorphismus ist. ¹

<4 Punkte

(39) Übung (36) (contd').

Berechnen Sie anhand von der Diagonalapproximation aus der o.g. Übung die Cup-Produkten in $H^*(G, M)$, für G eine endliche, zyklische Gruppe.

<5 Punkte

(40) Ring- und Modulstrukturen anhand von Cup-Produkten (I).

Sei X ein freier G-Komplex (X CW-Komplex, mit einer Zellen-permutierenden, freien Wirkung von G), der homoömorph zu S^{2k-1} ist – G muss dann endlich sein. Wir haben aus dem Lefschetz-Fixpunktsatz gesehen, dass G trivial auf $H_{2k-1}(X) = \mathbb{Z}$ operiert, woraus man eine exakte Sequenz von ZG-Moduln hat:

$$0 \to \mathbb{Z} \to C^{\operatorname{cell}}_{2k-1}(X) \to \ldots \to C^{\operatorname{cell}}_0(X) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0,$$

wo alle $C_l^{\text{cell}}(X)$ freie G-Moduln sind².

- (a) Zeigen Sie, dass es für jeden $\mathbb{Z}G$ -Modul M eine "iterierte Korandabbildung" d: $H^{i}(G,M) \to H^{i+2k}(G,M)$ gibt, die ein Isomorphismus ist für i > 0 und ein Epimorphismus falls i = 0.
- (b) Zeigen Sie, dass es ein $[u] \in H^{2k}(G,\mathbb{Z})$ gibt, so dass für die Abbildung d aus $(40a) d([v]) = [u] \smile [v] \text{ für alle } [v] \in H^*(G, M)^3.$

<7 Punkte

¹Hinweis: Benutzen Sie, u.A., die Koeffizientenverträglichkeit des Cup-Produktes.

²Dies, zusammen mit der exakten Sequenz von ZG-Moduln ist alles, was man bruacht! Für (a), tensorieren Sie diese exakte Sequenz mit M, teilen Sie diese in lauter kurzen exakten Sequenzen worauf Sie das Argument der Dimensionsverschiebung anwenden.

³Benutzen Sie die Kompatibilität von δ vom Cup-Produkt und die Eigenschaften der Eins-Kozykel.