DR. J. M. CERVIÑO

SS 2013

D. GUIRAUD

GRUPPENKOHOMOLOGIE

ÜBUNGSBLATT XIII

< 18.7.2013

(49) Betti Zahlen¹.

Seien R_{\bullet} und L_{\bullet} Komplexe endlich erzeugter, freier, abelscher Gruppen. Berechnen Sie den \mathbb{Z} -Rang von $H_{\star}(R_{\bullet} \otimes_{\mathbb{Z}} L_{\bullet})$ (bzw. seine Torsionsuntergruppe) anhand von $H_{\star}(R_{\bullet})$ und $H_{\star}(L_{\bullet})$.

<4 Punkte

(50) Mehr zur Künneth Formel und universellem Koeffiziententheorem².

Sei A ein kommutativer Ring mit Einselement.

- (a) Formulieren Sie eine entsprechende Künneth Formel für das Produkt dreier Komplexe von A-Moduln $R_{\bullet} \otimes_A M_{\bullet} \otimes_A L_{\bullet}$.
- (b) Benutzen Sie (i) mit $A = \mathbb{Z}$, um zu zeigen, dass für abelsche Gruppen G_i , i = 1,2,3 folgendes gilt

$$\operatorname{Tor}_{1}^{A}(G_{1}, \operatorname{Tor}_{1}^{A}(G_{2}, G_{3})) \cong \operatorname{Tor}_{1}^{A}(\operatorname{Tor}_{1}^{A}(G_{1}, G_{2}), G_{3}),$$

 $\operatorname{Ext}_{A}^{1}(G_{1}, \operatorname{Ext}_{A}^{1}(G_{2}, G_{3})) \cong \operatorname{Ext}_{A}^{1}(\operatorname{Tor}_{1}^{A}(G_{1}, G_{2}), G_{3}).$

<7 Punkte

(51) Induzierte Abbildung in der Homologie.

Seien G eine abelsche Gruppe, $m \in \mathbb{Z}$ und $\alpha_m : G \to G$ der Gruppenhomomorphismus $g \mapsto g^m$. Berechnen Sie die induzuerte Abbildung in der Homologie $(\alpha_m)_*: H_*(G,\mathbb{Q}) \to H_*(G,\mathbb{Q})$.

≤5 Punkte

(52) Äußere Algebren und Pontryagin Produkte.

Seien G eine abelsche Gruppe, und A ein Haupidealring mit einer trivialen Wirkung von G.

- (a) Zeigen Sie dass die Einbettung $\psi: \bigwedge^2(G \otimes_{\mathbb{Z}} A) \to H_2(G, A)$ aus Theorem 14 (bzw. (6.4) in Brown) bildet $(g \otimes 1) \wedge (p' \otimes 1)$ auf $[g \mid g'] [g' \mid g]$ ab.
- (b) Ist 2 in A invertierbar, zeigen Sie dann, dass die Abbildung $C_2^{\text{bar}}(G,A) \to \bigwedge^2(G \otimes_{\mathbb{Z}} A)$ gegeben durch $[g \mid g'] \mapsto (g \otimes 1) \wedge (g' \otimes 1)/2$ eine Abbildung $H_2(G,A) \to \bigwedge^2(G \otimes \mathbb{Z}A)$ induziert, die invers zu ψ ist.

≤8 Punkte

¹Die angegebenen Z-Ränge heißen Betti-Zahlen.

²Die exakten Sequenzen aus der Übungsaufgabe (15).