DR. J. M. CERVIÑO SS 2013

D. GUIRAUD

GRUPPENKOHOMOLOGIE

ÜBUNGSBLATT III

\leq	8.5.2013	(19:00	UHR)
--------	----------	--------	------

(9) Koinvarianten.

Seien G eine Gruppe, H eine normale Untergruppe von G, und M ein G-Modul.

- (a) Zeigen Sie, dass die Operation von G auf M eine Operation von der Quotientengruppe G/H auf M_H induziert.
- (b) Es gilt $M_G \cong (M_H)_{G/H}$.
- (c) Zeigen Sie, dass $M_H \cong \mathbb{Z}[G/H] \otimes_{\mathbb{Z}G} M$ als G/H-Moduln¹.

≤3 Punkte

(10) Standard-, Bar-, periodische Auflösung I.

Seien g_1, g_2, \ldots, g_l paarweise untereinander kommutierende Elementen aus einer Gruppe $G, z := \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn} \sigma} [g_{\sigma(1)} \mid \ldots \mid g_{\sigma(n)}] \in C_n(K(G))$. Zeigen Sie, dass z ein Zykel ist.

≤2 Punkte

(11) Standard-, Bar-, periodische Auflösung II.

Sei G eine nicht triviale zyklische Gruppe. Dann hat $M=\mathbb{Z}$ als trivialer $\mathbb{Z}G$ -Modul unendliche projektive Dimension (d.h. M besitzt keine projektive Auflösung von endlicher Länge). Schließen Sie daraus, dass für eine beliebige, nicht freie Gruppe G (d.h. G besitzt mindestens ein nicht triviales Torsionselement), der triviale $\mathbb{Z}G$ -Modul $M:=\mathbb{Z}$ auch unendliche projektive Dimension hat.

<3 Punkte

(12) Eine topologische Interpretation.

Sei Y ein weg-zusammenhängender topologischer Raum. Zeigen Sie, dass $H_{\star}(Y) \cong H_{\star}(G)$, falls es eine zusammenziehbare, reguläre Überlagerung X von Y gibt, mit Decktransformationsgruppe G^2 .

<4 Punkte

¹Da der zugrundeliegende Ring nicht unbedingt kommutativ ist, achtet man auf folgende Modulstrukturen: eine Rechtsmodulstruktur von $\mathbb{Z}[G/H]$ als G-Modul (H normal), um das Tensorprodukt zu bilden, und eine Linksmodulstruktur von $\mathbb{Z}[G/H]$ als G/H-Modul, um das Tensorprodukt als ein (linker) G/H-Modul zu betrachten.

²Hinweis: Der singulärer Kettenkomplex $C_{\star}^{\text{sing}}(X)$ gibt eine freie Auflösung von \mathbb{Z} als $\mathbb{Z}G$ -Modul und $C_{\star}^{\text{sing}}(X)_G \cong C_{\star}^{\text{sing}}(Y)$.